ORIGINAL ARTICLE

Liquid–liquid extraction studies with 4,4'-biphenylene-spaced bis- β -diketones

Jack K. Clegg · Bianca Antonioli · David J. Bray · Karsten Gloe · Kerstin Gloe · Katrina A. Jolliffe · Olga N. Kataeva · George V. Meehan · Marco Wenzel

Received: 9 March 2011/Accepted: 21 March 2011/Published online: 27 April 2011 © Springer Science+Business Media B.V. 2011

Abstract 4,4'-biphenylene spaced lipophilic bis- β -diketone ligands of the type 4,4'-bis(RC(O)CH₂C(O))C₁₂H₈ (R = Pr, Ph, hexyl, octyl, nonyl) have been prepared and used for the liquid–liquid extraction of d-block metal ions. These ligands are expected to interact with divalent metal ions to form charge-neutral trinuclear metallocycles of type [M₃(L³)₃(solvent)] as has been demonstrated with the

Dedicated to Mrs Fay Lindoy on the occasion of Len's 75th birthday.

J. K. Clegg (⊠) Department of Chemistry, The University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK e-mail: jack.k.clegg@gmail.com

J. K. Clegg · D. J. Bray · K. A. Jolliffe School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

B. Antonioli · K. Gloe · K. Gloe · O. N. Kataeva · M. Wenzel Department of Chemistry and Food Chemistry, Technical University Dresden, 01062 Dresden, Germany

O. N. Kataeva

A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan 420088, Russia

G. V. Meehan School of Pharmacy and Molecular Sciences, James Cook University, Townsville 4814, Australia

M. Wenzel

School of Chemistry, The University of Southampton, Southampton SO17 1BJ, UK

previously reported derivative of H_2L^3 (R = ^{*t*}Bu), the X-ray structure of which is reported. Liquid–liquid extraction studies were performed in a two-phase water/ chloroform system employing a radiotracer technique for cobalt(II) and zinc(II). These experiments involved the systematic variation of ligand, metal and 4-ethylpyridine concentrations to probe the stoichiometries of the species extracted. Synergistic extraction was observed when 4-ethylpyridine was present with the ligand in the organic phase. Competitive extraction studies demonstrated the ligands are highly selective for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).

Keywords β -diketone · Cadmium(II) · Cobalt(II) · Copper(II) · Metallocycle · Nickel(II) · Solvent extraction · Selectivity · Synergism · Zinc(II)

Introduction

The rich array of interesting metal ion coordination chemistry of the versatile β -diketone chelating group has now been studied for well more than a century [1–6]. There has been significant recent interest in the metallosupramolecular chemistry of these systems [7–11] particularly where more than one β -diketone group have been incorporated into extended ligand structures [12–50]. In part motivated by the above studies, we [19, 51–60], and others [61–65], have recently employed a series of bis- β -diketone ligands of type H₂L¹, H₂L², H₂L³ and H₂L⁴ and their derivatives[66] to form discrete chargeneutral materials upon interaction with suitable metal ions such as cobalt(II), nickel(II), copper(II), zinc(II), iron(III) and gallium(III).

R = Me, Et, Pr, ^{*t*}Bu, Ph, hexyl, octyl, nonyl

The well-defined coordination vectors of the doubly deprotonated forms of H_2L^{1-4} lead to the formation of a variety of multinuclear species. For example, with divalent metal ions these include both planar dinuclear metallocycles of type $[M_2(L^1)_2(\text{solvent})]$ [52, 54, 55, 57], as well as planar triangular molecules of type $[M_3(L^{2-3})_3(\text{solvent})]$ [51, 53, 56, 58]. With trivalent metal ions dinuclear triple helical complexes of type $[M_2(L^1)_3]$ [52, 55] and $[M_2(L^4)_3]$, tetrahedra of type $[M_4(L^{2-3})_6]$ [51, 56, 60] and the unprecedented $[M_8(L^4)_{12}]$ universal 3-ravel motif result [59].

 $R = Me, Et, Pr, {}^{t}Bu, Ph, hexyl, octyl, nonyl$

In previous investigations it has been demonstrated that the metal centres in the copper(II) complexes of L^{1-3} ([Cu₂(L^1)₂], [Cu₃(L^2)₃] and [Cu₃(L^3)₃]) are either coordinatively unsaturated or are weakly bound by axial solvent molecules which can be readily displaced by the reaction of an ancillary nitrogen donor ligand such as pyridine. This allows for the essentially planar metallocycles to be employed as essentially planar platform-like building blocks for the facile formation of extended discrete multinuclear architectures and one-, two- and three-dimensional metal–organic framework materials, when reacted with appropriate di- (or higher) functional heterocyclic nitrogen ligands.

In extensions of these studies we investigated the liquid– liquid extraction behaviour of H_2L^1 and H_2L^2 and noted both a strong synergistic effect in the extraction of cobalt(II) and zinc(II) when ethylpyridine (EtPy) was added to the bis- β -diketone ligand in the organic phase and strong competitive discrimination in extraction in favour of copper(II) over cobalt(II), nickel(II) zinc(II) and cadmium(II). Further to those reports, herein we present the synthesis of four new expanded ligands of type H_2L^3 (R = Pr, hexyl, octyl, nonyl) and the liquid–liquid extraction properties of this class of ligands including the two previously reported ligands (R = ^{*t*}Bu, Ph) [58, 60, 67].

Experimental

All reagents and solvents were purchased from commercial sources and used without further purification. THF was pre-dried over sodium wire before use. NMR spectra were recorded on Bruker Avance DPX200, DPX300 or DPX400 spectrometers; $\delta^{\rm H}$ values are relative to Me₄Si at 0 ppm. Low resolution electrospray ionisation mass spectra (ESI-MS) were obtained on a Finnigan LCQ-8 spectrometer. FTIR (KBr) spectra were collected using a Bio-Rad FTS-40 spectrometer. Microanalyses were carried out by the Microanalytical Laboratories at the University of Otago, NZ.

Ligand synthesis

Ligand H_2L^3 (R = ^{*t*}Bu) was prepared as previously reported [58, 60]. Ligands H_2L^3 (R = Pr, Ph, hexyl, octyl, nonyl) were prepared via an adaptation of that procedure.

Sodium hydride (5.0 g, 0.21 mol) was added to a mixture of dimethyl biphenyl-4,4'-dicarboxylate (6.76 g, 0.025 mol) and pentan-2-one (4.3 g, 0.05 mol) (R = Pr), or acetophenone (6 g, 0.05 mol) (R = Ph), or 2-octanone (6.4 g, 0.05 mol) (R = hexyl), or 2-decanone (7.8 g, 0.05 mol) (R = octyl), or 2-undecanone (8.5 g, 0.05 mol) (R = nonyl) in dry tetrahydrofuran (100 mL) at 0 °C. The mixture was stirred for 2 h at this temperature and then for 2 h at 26 °C over which time the mixture turned yellow. The reaction solution was quenched with ice water (100 mL) and then acidified to pH 4 using 1 M hydrochloric acid; two phases formed. The organic phase (tetrahydrofuran) was separated from the aqueous phase. The aqueous phase was washed twice with chloroform (100 mL), the organic phases were combined and the solvent was removed under reduced pressure to yield the crude product. This was recrystallised from ethanol.

1,1'-(4,4'-Biphenylene)-bis-hexane-1,3-dione, $H_2L^3(R = Pr)$

Yield 5.21 g (55%), yellow plates.

¹H-NMR δ (200 MHz CDCl₃): 16.68 (broad s, enol, 2H), 7.99 (d, aromatic, 4H), 7.72 (d, aromatic, 4H), 6.35 (s,

-CH- enol, 2H), 2.37(t, -CH₂-, 4H), 1.65 (qu, -CH₂-, 4H), 0.94 ppm (t, -CH₃, 6H). (ESI-MS): m/z 379 $[M + H]^+$. FTIR (KBr): 2963(br), 1617(vbr), 1270, 825, 786 cm⁻¹. Found: C, 76.07; H, 6.76%. Calc. for C₂₄H₂₆O₄: C, 76.17; H, 6.93%.

1,1'-(4,4'-Biphenylene)-bis-3-phenylpropane-1,3-dione, $H_2L^3(R = Ph)$

Yield 7.25 g (65%), yellow plates.

¹H NMR δ(200 MHz CDCl₃): 16.50 (broad s, enol, 2H),), 7.99 (d, aromatic, 4H), 7.72 (d, aromatic, 4H), 7.63 (m, -Ph, 10H), 6.35 (s, -CH- enol, 2H). (ESI-MS): m/z 447 [M + H]⁺. FTIR (KBr): 3010(br), 1560(vbr), 1113, 840, 761 cm⁻¹. Found: C, 78.54; H, 5.31%. Calc. for C₃₀H₂₂O₄·0.75(CH₃OH): C, 78.48; H, 5.36%.

1,1'-(4,4'-Biphenylene)-bis-nonane-1,3-dione, H_2L^3 (R = hexyl)

Yield 8.66 g (75%), yellow plates.

¹H-NMR δ (200 MHz CDCl₃): 16.10 (broad s, enol, 2H), 7.99 (d, aromatic, 4H), 7.72 (d, aromatic, 4H), 6.35 (s, –CH– enol, 2H), 2.45 (br *m*, –CH₂–, 4H), 1.70 (br *m*, –CH₂–, 4H), 1.34 (br *m*, –CH₂–, 12H), 0.90 ppm (br *m*, –CH₃, 6H). (ESI– MS): *m/z* 463 [*M* + H]⁺. FTIR (KBr): 2952(br), 1635(vbr), 1322, 1134, 1078, 804, 778 cm⁻¹. Found: C, 78.10; H, 8.22%. Calc. for C₃₀H₃₈O₄: C, 77.89; H, 8.28%.

1,1'-(4,4'-Biphenylene)-bis-undecane-1,3-dione, H_2L^3 (R = octyl)

Yield 8.03 g (62%), yellow plates.

¹H NMR δ(200 MHz CDCl₃): 16.07 (broad s, enol, 2H), 7.99 (d, aromatic, 4H), 7.72 (d, aromatic, 4H), 6.32 (s, -CH- enol, 2H), 2.44 (br *m*, -CH₂-, 4H), 1.70 (br *m*, -CH₂-, 4H), 1.34 (br m, -CH₂-, 20H), 0.89 ppm (br m, -CH₃, 6H).) (ESI-MS): m/z 519 [M + H]⁺. FTIR (KBr): 2932(br), 1616(vbr), 1271, 1137, 1081, 802, 778, 720 cm⁻¹. Found: C, 78.91; H, 8.80%. Calc. for C₃₄H₄₆O₄: C, 78.71; H, 8.94%.

1,1'-(4,4'-Biphenylene)-bis-dodecane-1,3-dione, H_2L^3 (R = nonyl)

Yield 8.19 g (60%), yellow plates.

¹H-NMR δ (200 MHz CDCl₃): 16.30 (broad s, enol, 2H), 7.99 (d, aromatic, 4H), 7.72 (d, aromatic, 4H), 6.33 (s, –CH– enol, 2H), 2.46 (br m, –CH₂–, 4H), 1.71(br m, –CH₂–, 4H), 1.33 (br m, –CH₂–, 24H), 0.88 ppm (br m, –CH₃, 6H). (ESI–MS): m/z 547 [M + H]⁺. FTIR (KBr): 2928(br), 1635(vbr), 1322, 1081, 786 cm⁻¹. Found: C, 78.84; H, 8.95%. Calc. for C₃₆H₅₀O₄: C, 79.07; H, 9.22%.

Liquid-liquid extraction experiments

Liquid-liquid extraction experiments were performed at 24 ± 1 °C in microcentrifuge tubes (2 mL) with a phase ratio $V_{(org)}$: $V_{(aq)}$ of 1:1 (500 µL each). The aqueous phase contained the metal perchlorate (normally 1×10^{-4} M, except where variable concentration experiments were employed), and a selected buffer. The zwitterionic buffer systems, TAPS/NaOH, HEPES/NaOH and MES/NaOH, were used (depending on the chosen pH) to maintain the pH in this phase; as a precaution, the pH of this phase was checked before and after each experiment. A majority of the experiments were carried out at pH 8.7 using the TAPS/ NaOH system. The chloroform organic phase contained a known concentration of a H_2L^3 ligand (normally 1×10^{-3} M, except where variable concentration experiments were employed) and in some experiments also 4-ethylpyridine (normally 2×10^{-3} M except where variable concentration experiments were conducted). All solvent extraction experiments involved the mechanical shaking of the two-phase system until equilibrium had been established. The overall error for individual extractions is estimated to be approximately $\pm 5\%$.

In the case of the single metal ion experiments a shaking time of three hours was used for the cobalt(II) experiments and 30 min for the zinc(II) experiments. At the end of these times, the phases were separated, centrifuged and then duplicate 100 μ L samples of the aqueous and organic phases were removed for analysis. The concentration of the cobalt or zinc was measured in both phases radiometrically using ⁶⁰Co and ⁶⁵Zn radioisotopes (ROTOP Pharmaka) by means of a NaI (TI) scintillation counter (Cobra II/Canberra-Packard) [68, 69].

The competitive (multi-metal) extraction experiments employed a shaking time of 24 h. For these experiments the depletion of the metal ion concentrations in the aqueous phase was measured using an ICP-MS (ELAN 9000/Perkin Elmer) spectrometer.

Three sets of variable concentration experiments were also undertaken. Ligand dependence studies were performed in which the concentration of H_2L^3 (R = ^{*t*}Bu, nonyl) was varied from 5×10^{-4} to 1.5×10^{-3} M while the zinc(II) concentration was maintained at 1×10^{-4} M. Similar experiments were carried out in the presence of 4-ethylpyridine $(2 \times 10^{-3} \text{ M})$ for both cobalt(II) and zinc(II). In each case log D_M was plotted against log $[H_2L^3]_{org}$ and the slope determined.

4-Ethylpyridine dependence studies were also carried out. These involved varying the 4-ethylpyridine concentration from 2×10^{-4} to 2×10^{-3} M while maintaining the metal ion concentration at 1×10^{-4} M and the ligand concentration at 1×10^{-3} M. Log $D_{\rm M}$ was then plotted against log [4-ethylpyridine]_{org} and the slope determined. A series of experiments were also performed in which the metal ion concentration was varied from 1×10^{-4} to 5×10^{-3} M at pH 8.7 (TAPS/NaOH), both in the absence and presence of 4-ethylpyridine (2×10^{-3} M), while maintaining the ligand concentration at 1×10^{-3} M. From the observed maximum metal loading of the organic phase, the stoichiometry of the extracted complex can be deduced [70].

Multi-metal competitive extraction experiments were also performed using an equimolar mixture of the following metal ions in the aqueous phase: cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) at pH 7.8 in the absence of 4-ethylpyridine in the organic phase or at pH 7.4 (HEPES/NaOH buffer) in its presence. The aqueous phase contained each of the above metal perchlorate salts at a concentration of 1×10^{-4} M and the organic phase (chloroform) contained a 1×10^{-3} M concentration of H_2L^3 and in the second set of experiments also 4-ethylpyridine at 2×10^{-3} M.

X-ray structure determination

Data for H_2L^3 (R = ^tBu) were collected on a NoniusKappa CCD employing graphite-monochromated Mo-Ka radiation generated from a sealed tube (0.71073 Å) with φ and ω scans to approximately 56°2 θ at 293(2) K. Data collections were undertaken with COLLECT, [71] cell refinement with Dirax/ lsq [72], data reduction with EvalCCD [73]. Subsequent computations were carried out using the WinGX-32 graphical user interface [74]. The Structure were solved by direct methods using SIR97 [75]. A Multi-scan empirical absorption correction was applied to data sets using the program SADABS [76]. Data were refined and extended with SHELXL-97 [77]. All non-hydrogen atoms were refined anisotropically. Oxygen-bound hydrogen atoms were first located in the difference Fourier map before refinement. Carbon and oxygen-bound hydrogen atoms were included in idealised positions and refined using a riding model.

Formula C₂₆H₃₀O₄, *M* 406.50, monoclinic, space group *P*2₁/c(#14), *a* 18.792(1), *b* 5.7140(2), *c* 10.551(1) Å, β 102.721(3), *V* 1105.13(13) Å³, *D*_c 1.222 g cm⁻³, *Z* 2, crystal size 0.43 by 0.41 by 0.12 mm, colour colourless, habit plate, temperature 293(2) K, λ (MoK α) 0.71073 Å, μ (MoK α) 0.081 mm⁻¹, *T*(SADABS)_{min,max} 0.9660, 0.9903, 2 θ _{max} 50.82, *hkl* range -22 22, -6 6, -12 12, *N* 13064, *N*_{ind} 2025(*R*_{merge} 0.0375), *N*_{obs} 1424 (I > 2 σ (I)), *N*_{var} 141, residuals * *R*1(*F*) 0.0415, *wR*2(*F*²) 0.1118, GoF(all) 1.034, $\Delta \rho_{min,max}$ -0.190, 0.155 e⁻Å⁻³.

 ${}^{*}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}| \text{ for } F_{o} > 2\sigma(F_{o}); wR2 =$ $\left(\Sigma w \left(F_{o}^{2} - F_{c}^{2}\right)^{2}/\Sigma \left(wF_{c}^{2}\right)^{2}\right)^{1/2} \text{ all reflections}$ $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0578P)^{2} + 0.2224P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$

Results and Discussion

Ligand synthesis and X-ray structure of H_2L^3 (R = ^{*t*}Bu)

Ligands of type H_2L^3 were synthesised in good yields by employing a Claisen condensation from bis-methyl ester and 2-ketone starting materials in the presence of sodium hydride following an adaptation of literature procedures for related compounds [21, 51, 52, 58, 60, 67, 78-80]. The broad peak present above 16 ppm integrating to two protons in each of the ¹H NMR spectra of the H₂L³ (R = Pr, ^{*t*}Bu, Ph, hexyl, octyl, nonyl) ligands indicated that these compounds exist almost entirely in their bis-enol tautomeric form in deuterochloroform solution. This is supported by the presence of a sharp singlet at ~ 6.3 ppm which corresponds to Hy. The solid state infrared spectra also suggest the presence of hydrogen bonded hydroxy and carbonyl groups (peaks at $\sim 1600 \text{ cm}^{-1}$ and $\sim 3000 \text{ cm}^{-1}$) [81]; intramolecular hydrogen bonding in the enol form of β -diketone fragments stabilises them with respect to their keto tautomers [82]. These observations are consistent with those made for ligands of type H_2L^1 , H_2L^2 and H_2L^4 . [44, 51, 52, 55, 56, 59, 63, 64] In contrast to these systems, numerous simple β -diketones [83] and a number of bis- and tris- β -diketone ligands have been reported in which the β -diketone groups have been shown to exist as a mixture of both keto and enol forms in solution [41, 42, 45, 46]. In the solid state, however, a number of tris- β -diketone ligands have been shown by X-ray crystallography to exist either exclusively in their trisdiketo [46] or tris-enol [47] forms, while at least in one case, a bis- β -diketone ligand has been shown to occur in a mixed form (one diketo group and one enol/keto arrangement) in the solid state [45]. Crystal structures of H_2L^{1-2} on the other hand, suggest that they are present exclusively in the enol form in the solid state [52, 56, 63].

In this context it was of interest to confirm what configuration the present ligands of type H_2L^3 adopt in the solid state. Small colourless plate-like crystals of H_2L^3 ($R = {}^{t}Bu$) were grown from the slow evaporation of a tetrahydrofuran solution and the structure was determined (Fig. 1). Like the structure of H_2L^2 ($R = {}^{t}Bu$) previously reported [56], this structure contains crystallographic inversion symmetry such that half the molecule lies within the asymmetric unit. The structure reveals that, as occurs in solution, the bis-enol form exists in the crystalline phase with the enol hydrogens disordered over two positions and exist with 50% occupancy on both (adjacent) oxygens. The expected intramolecular hydrogen bonds are present between each pair of adjacent oxygen atoms (O(1)...O(2) = 2.4636(15) Å; O(1)–H(1)– (O2) angle 150.6°).

The ligand exists in its idealised *trans* configuration with the two β -diketone fragments orientated such that their chelation vectors aligned approximately 180° with respect to each other. The molecule is essentially planar, reflecting the sp^2 hybridisation of the ligand backbone and the presence of weak CH(phenylene) to oxygen interactions (C(9)H···O(2) = 2.4 Å). There are a variety of weak edgeto-face π - π interactions present in the lattice between the biphenylene units in adjacent molecules. These are reflected by CH–C distances of ~ 3.0 Å. These interactions may contribute to reducing the electron withdrawing effects of the phenyl rings and assist the delocalisation of the enol hydrogen bond.

Liquid-liquid extraction studies

Simple β -diketones have been previously employed as extractants in a variety of liquid–liquid extraction experiments including mineral processing applications [85, 86], however, there appear to be no reports of the use of bis- β -diketone ligands of the present type for similar studies, despite them being known for some time [78], their relative ease of synthesis in good yields and low cost starting materials. We recently reported that both the 1,3- and 1,4-phenylene bridged ligands of type H₂L¹ and H₂L²

synergistically extract a variety of metal ions in the presence of 4-ethylpyridine (EtPy) and displayed a strong preference for the selection of copper(II) in competitive extractions [55, 56, 87]. It was therefore of interest to explore the liquid–liquid extraction behaviour of the expanded 4,4'-biphenylene ligands of type H_2L^3 .

Extraction experiments at constant metal and ligand concentration

The extraction behaviour of H_2L^3 (R = Pr, Ph, ^{*t*}Bu, hexyl, octyl and nonyl) was studied using the previously described radiotracer technique [68, 69] employing cobalt(II) and zinc(II). Extraction experiments were performed in parallel both in the absence and presence of 4-ethylpyridine; the results are summarised in Fig. 2. 4-Ethylpyridine was used as it is both more lipophilic and less water soluble than pyridine. At pH 8.7 in the absence of 4-ethylpyridine, cobalt(II) extraction is insignificant ($\leq 1\%$) for the ligand series, while extraction is more pronounced for zinc(II) (ranging from 2 to 31%). As expected, the more lipophilic ligand derivatives clearly give rise to enhanced extraction.

Repeating the experiments with the addition of two equivalents of 4-ethylpyridine relative to H_2L^3 (2 × 10^{-3} M) the extraction of cobalt(II) slightly increased to 8% in the case of H_2L^3 (R = nonyl) and also increased from 31 to 51% for zinc(II) with H_2L^3 (R = nonyl). The time required to reach equilibrium in the case of cobalt(II) was also approximately halved (from three to one and a half hours) and the synergistic effect is more pronounced for the nonyl derivative, especially in the case of cobalt(II). Parallel

'control' experiments in the absence H_2L^3 but at the same concentration of 4-ethylpyridine were performed; under these conditions metal extraction was negligible at $\leq 1\%$.

Both in the presence and absence of 4-ethylpyridine, these systems show no significant extraction of metal below approximately pH 6 and thus the extracted metal may be stripped by pH adjustment of the aqueous phase to below this pH.

Clearly the enhancement of extraction in the presence of 4-ethylpyridine is significant for both zinc(II) and cobalt(II) for H₂L³ (R = hexyl, octyl, nonyl); however, under identical experimental conditions more pronounced increases in extraction were observed for H₂L¹⁻². In the case of H₂L¹ (R = nonyl) an increase from 12 to 70% was observed for cobalt(II) while the increase for zinc was 53 to 85% [55] and in the case of H₂L² (R = nonyl) the increase in extraction was from 2 to 26% for cobalt(II) and from 35 to 61% for zinc(II) [56].

H_2L^3 dependence studies

The stoichiometries of the extracted species were analysed by undertaking the extraction of cobalt(II) and zinc(II) (at 1×10^{-4} M) under variable H₂L³ (R = nonyl) concentration in the presence of a fixed concentration (2 × 10⁻³ M) of 4-ethylpyridine as well as in its absence. For the extractions involving zinc(II) and H₂L³ (R = ^{*t*}Bu, hexyl, octyl, nonyl) in all cases the concentration of the H₂L³ was varied from 5 × 10⁻⁴ to 1.5 × 10⁻³ M (namely, it was always in excess relative to the metal ion concentration in an attempt to approximate constant ionic strength

Fig. 2 Percentage of metal ion extracted from the aqueous into the organic phase by H_2L^3 (R = Pr, 'Bu, Ph, hexyl, octyl and nonyl), and on the addition of 4-ethylpyridine (*). $[M(ClO_4)_2] = 1 \times 10^{-4}$ M, pH 8.7 (TAPS/NaOH buffer); $[H_2L^3] = 1 \times 10^{-3}$ M, [4-ethylpyridine] = 2×10^{-3} M in CHCl₃ (*); shaking time 30 min for zinc(II), 3 h for cobalt(II) or 1.5 h (when 4-ethylpyridine was added);

 $T=24\pm1$ °C. Attempts to obtain data for zinc(II) with H_2L^3 (R = Pr and Ph) in the presence of 4-ethylpyridine were unsuccessful due to precipitation at the respective aqueous/organic interfaces. Values of less than 1% have high uncertainty and may lie within experimental error of zero

Table 1 Gradients of the plots obtained for the variable H_2L^3 and 4-ethylpyridine (EtPy) (water-chloroform) studies

Experiment	H_2L^3 Ligand	Slope		
		$\overline{\text{Zn}(\text{II})/\text{H}_2\text{L}^3}$	$Zn(II)/H_2L^3 + EtPy$	$Co(II)/H_2L^3 + EtPy$
H_2L^3 dependence	R = t-Bu	1.7	N/A	N/A
	R = hexyl	2.0	N/A	N/A
	R = octyl	2.0	N/A	N/A
	R = nonyl	1.9	1.7	2.0
4-ethylpyridine dependence	$\mathbf{R} = \mathrm{nonyl}$	N/A	0.7	0.8

conditions) [69]. The negligible extraction observed for cobalt(II) in the absence of 4-ethylpyridine (Fig. 2) across all H_2L^3 ligands prevented investigation of this system over the above concentration range.

For each of the above experiments, log $D_{\rm M}$ ($D_{\rm M} = [{\rm M}^{n+}]_{({\rm org})}/[{\rm M}^{n+}]_{({\rm aq})}$) was plotted against log $[{\rm H}_2{\rm L}^3]$. Provided a 'simple' equilibrium is involved, the slope of this plot gives the stoichiometry (*n*) of the extracted species directly since log $D_{\rm M} = n \log[{\rm L}]_{\rm org} + {\rm K}_{\rm ex}$ (where ${\rm K}_{\rm ex}$ is the extraction constant) [69, 88, 89]. The results for both cobalt(II) and zinc(II) with ${\rm H}_2{\rm L}^3$ at pH 8.7 in both the absence and presence of 4-ethylpyridine show that linear relationships occur between log $D_{\rm M}$ and the log $[{\rm H}_2{\rm L}^3]$ in each case. For the present ligand series, slopes that range from 1.7 to 2.0 were obtained (Table 1), suggesting that, like ${\rm H}_2{\rm L}^2$, but unlike ${\rm H}_2{\rm L}^1$ (in which a mixture of products was observed to form), predominantly 1:2 (M:L) species are extracted under the conditions employed.

4-Ethylpyridine dependence studies

These involved variation of the 4-ethylpyridine concentration over the range 2×10^{-4} – 2×10^{-3} M while the other concentrations were held constant. In the case of H₂L³ (R = nonyl) with both cobalt(II) and zinc(II), a metal: 4-ethylpyridine ratio of approximately 0.8 was obtained (Table 1). This suggests that, under the conditions employed, the predominant species extracted has one 4-ethylpyridine coordinated per metal centre.

Variable metal concentration studies

A further procedure for probing the stoichiometry of the extracted species has been undertaken as part of the present study. This method is based on a defined complex being generated in the organic phase under 'saturation' conditions—corresponding to a constant ligand concentration in the presence of excess metal ion [70]. H₂L³ (R = nonyl) at a concentration of 1×10^{-3} M was employed in the chloroform phase. In the case of zinc the [metal]/[ligand] ratio of the extracted species was probed by incrementally increasing the zinc concentration in the aqueous phase

from 1×10^{-4} to 5×10^{-3} M (at pH 8.7) while the degree of zinc extracted into the chloroform phase was monitored. The inflection in the corresponding plot obtained from this experiment provides an indication of the maximum zinc to ligand ratio for complex formation. The conditions employed for these studies are thus somewhat different to those used for the extraction experiments discussed above.

The results for the variable metal concentration studies are summarised in Table 2 and show that, like the studies for the H_2L^1 and H_2L^2 ligand series under the conditions employed, an equimolar ratio (metal:ligand = 1:1) is indicated for zinc(II) in the absence of added 4-ethylpyridine. This ratio is comparable to that present in the X-ray crystal structure of $[Co_3(L^3)_3Py_6] \cdot 5.55Py \cdot 0.6H_2O$ (R = 'Bu) [58] and suggests that the structures in solution may be of a similar type ($[M_3(L^3)_3]$) under the experimental conditions employed.

Further variable metal concentration loading experiments were undertaken in which the solution stoichiometries of the cobalt(II) and zinc(II) systems with H_2L^3 (R = nonyl) were probed under similar conditions, but this time in the presence of a fixed concentration of 4-ethylpyridine of 2×10^{-3} M. The presence of 4-ethylpyridine causes a major change in the species being extracted, leading to ratios that approximate the formation of ML₂ (M = Co, Zn) derivatives. From these experiments, two types of extracted complexes of the H_2L^3 ligand series can be proposed to form under the saturation conditions discussed above. As in the case of the H_2L^2 series, in the absence of 4-ethylpyridine only a 1:1 (metal:ligand) complex (most likely of type [M₃(L³)₃]) occurs while in the presence of 4-ethylpyridine the dominant complex in each

Table 2 Maximum metal:ligand ratios for the organic phases obtained from loading experiments involving a fixed concentration of H_2L^3 (R = nonyl) and varying metal ion concentration

Ligand H_2L^3	Metal: liga	Metal: ligand ratio			
	$Zn(II)/H_2L^3$	$Zn(II)/H_2L^3 + EtPy$	$\frac{\text{Co(II)}}{\text{H}_2\text{L}^3 + \text{EtPy}}$		
R = nonyl	1.0	0.6	0.6		

case corresponds to a 1:2 (metal:ligand) species (most likely of type $[M(L^3)_2(EtPy)]$). These results are in general accord with those obtained in the ligand dependence studies where, under different conditions, it is likely that 1:2 (metal:ligand) species exist in both the presence and absence of added 4-ethylpyridine.

Summary of extracted complex species

As might be expected, the results of the solvent extraction experiments for H_2L^3 parallel those obtained with H_2L^2 in which two complex species were formed in the respective organic phases [56], with the mix of species depending on the conditions employed. In the absence of 4-ethylpyridine with an excess of H_2L^3 ligand a 1:2 (metal:ligand) complex forms, while in the presence of excess metal ion, complexes of stoichiometry 1:1 (3:3) (metal:ligand) are postulated to occur. In the presence of 4-ethylpyridine a 1:2:1 (metal:ligand: 4-ethylpyridine) complex appears to be the dominant (perhaps only) extracted species in all cases. These conclusions are illustrated graphically in Scheme 1.

Competitive extractions

In order to explore the metal ion selectivities of these ligands, competitive extraction experiments were carried out at pH 7.4 (HEPES/NaOH) in the absence of 4-ethylpyridine for the ligands H_2L^3 (R = ^tBu, hexyl, octyl and nonyl). Equal concentrations of five different divalent transition metal perchlorate salts (cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), each 1×10^{-4} M) were added to the aqueous phase and H_2L^3 (R = ^tBu, hexyl, octyl or nonyl) at 1 × 10⁻³ M were added to the organic phase. The phases were combined and shaken for 24 h before the metal ion concentrations were determined by ICP-MS. A marked selectivity for copper(II) over the other four divalent transition metal ions present was obtained (Fig. 3). Within experimental error, nearly quantitative (>95%) extraction of copper ion occurred in each case, with practically no extraction occurring for the remaining four metals.

Similar competitive extraction experiments were carried out in the presence of 4-ethylpyridine $(2 \times 10^{-3} \text{ M})$ at pH 7.4 but otherwise the conditions were identical to those used in the above studies. The results again show a high selectivity for copper(II) (100% extraction), while the extraction of the other metal ions is negligible ($\leq 4\%$) (Fig. 3). For each of the systems investigated, the selectivity for copper(II) is most pronounced in the present case compared to the results obtained with H₂L¹⁻² [55, 56, 87]. These results are in broad accord with the synergistic effects discussed earlier for the radiotracer studies involving zinc(II) and cobalt(II).

Scheme 1 Proposed complex species formed in the liquid–liquid extraction studies with H_2L^3 : (1) with excess metal in the aqueous phase (in the absence of EtPy); (2) with excess of ligand in the organic phase (in the absence of EtPy); (3) in presence of EtPy under conditions used for either (1) or (2) being employed

Fig. 3 Percentage of cadmium(II), cobalt(II), nickel(II), zinc(II) and copper(II) competitively extracted from the aqueous into the organic phase with $H_2L^3(R = {}^{t}Bu$, hexyl, octyl and nonyl) in the presence of 4-ethylpyridine. [M(ClO₄)₂] = 1 × 10⁻⁴ M, pH 7.4. (HEPES/NaOH buffer); [H₂L³] = 1 × 10⁻³ M, [4-ethylpyridine] = 2 × 10⁻³ M in CHCl₃; shaking time 24 h; T = 24 ± 1 °C. Metal content of the organic phase was determined directly using ICP-MS

Concluding Remarks

We present the synthesis of four new lipophilic 4,4'biphenylene spaced bis- β -diketone ligands of type H₂L³. The crystal structure of H_2L^3 (R = ^{*t*}Bu) displays a similar arrangement in the crystalline phase to H_2L^2 (R = ^tBu). Liquid-liquid extraction studies employing H_2L^3 (R = Pr, ^tBu, Ph. hexvl. octvl. nonvl) have been undertaken with, in general, the results paralleling those obtained for the related 1,3- and 1,4-phenylene spaced ligands H_2L^1 and H_2L^2 [55, 56, 87]. Collectively, they show that the stoichiometries of the extracted species depend on the relative concentrations of metal and ligand species present as well as their lipophilicities; higher levels of extraction were observed by the more lipophilic ligands. Interestingly, synergistic extraction was observed on addition of 4-ethylpyridine to the respective ligand/metal ion systems. Competitive metal extraction studies indicated a clear selectivity for copper(II) extraction when equal concentrations of cobalt(II), nickel(II), zinc(II) and cadmium(II) were also present in the aqueous phase.

Supplementary material

Crystallographic data H_2L^3 (R = ^{*t*}Bu) has been deposited with CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and is identified by deposition number CCDC 813650. Copies of this information can be obtained free of charge on request by e-mail at deposit@ccdc.cam.ac.uk or at http://www.ccdc.cam.ac.uk.

Acknowledgements We thank the Australian Research Council, the Deutsche Forschungsgemeinschaft, the International Program Development Fund (University of Sydney) and the Marie Curie IIF scheme of the 7th EU Framework Program for support. We thank Prof. Peter Tasker and Dr. Ross Gordon from the University of Edinburgh for helpful discussions. We thank Prof. Len Lindoy for his assistance and advice throughout the project.

References

- Werner, A.: Über acetylacetonverbindungen des platins. Ber. Dtsch. Chem. Ges. 34, 2584–2593 (1901)
- Swallow, A.G., Truter, M.R.: Stereochemistry of β-dioxo complexes with trimethylplatinum(IV). I. Crystal structure of trimethyl-4,6-dioxononylplatinum. Proc. R. Soc. Lond. A 254, 205–217 (1960)
- Gibson, D.: Carbon-bonded β-diketone complexes. Coord. Chem. Rev. 4, 225–240 (1969)
- 4. Dwyer, F.P., Mellor, D.P. (eds): Chelating Agents and Metal Chelates. Academic Press, New York (1964)
- Casellato, U., Vigato, A., Fenton, D.E., Vidali, M.: Compartmental ligands: routes to homo- and hetero-dinuclear complexes. Chem. Soc. Rev. 8, 199–220 (1979)

- Casellato, U., Vigato, P., Vidali, M.: Transition metal complexes with binucleating ligands Coord. Chem. Rev. 23, 31–117 (1977). doi:10.1016/S0010-8545(00)80330-6
- 7. Bray, D.J., Clegg, J.K., Lindoy, L.F., Schilter, D.: Self-assembled metallo-supramolecular systems incorporating β -diketone motifs as structural elements. Adv. Inorg. Chem. **59**, 1–37 (2007)
- Soldatov, D.V.: Soft organic and metal-organic frameworks with porous architecture: From wheel-and-axle to ladder-and-platform design of host molecules. J. Chem. Crystallogr. 36, 747–768 (2006)
- Soldatov, D.V., Henegouwen, A.T., Enright, G.D., Ratcliffe, C.I., Ripmeester, J.A.: Nickel(II) and Zinc(II) dibenzoylmethanates: molecular and crystal structure, polymorphism, and guest- or temperature-induced oligomerization. Inorg. Chem. 40, 1626–1636 (2001)
- Won, T.-J., Clegg, J.K., Lindoy, L.F., McMurtrie, J.C.: Cobalt(II), copper(II), and zinc(II) framework systems derived from ditopic pyridyl-acetylacetone and pyridyl-pyrazole ligands. Cryst. Growth Des. 7, 972–979 (2007)
- Dudek, M., Clegg, J.K., Glasson, C.R.K., Kelly, N., Gloe, K., Gloe, K., Kelling, A., Buschmann, H.-J., Jolliffe, K.A., Lindoy, L.F., Meehan, G.V.: Interaction of copper(II) with ditopic pyridyl-β-diketone ligands: dimeric, framework and metallogel structures. Cryst. Growth Des. (in press)
- Saalfrank, Rolf.W., Maid, H., Scheurer, A.: Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. 47, 8794–8824 (2008)
- 13. Maverick, A.W., Klavetter, F.L.: Cofacial binuclear copper complexes of a bis(β -diketone) ligand. Inorg. Chem. 23, 4129–4130 (1984)
- Maverick, A.W., Buckingham, S.C., Yao, Q., Bradbury, J.R., Stanley, G.G.: Intramolecular coordination of bidentate Lewis bases to a cofacial binuclear copper(II) complex. J. Am. Chem. Soc. 108, 7430–7431 (1986)
- Bradbury, J.R., Hampton, J.L., Martone, D.P., Maverick, A.W.: Preparation, structure and redox activity of nickel(II), palladium(II), and copper(II) cofacial binuclear bis(β-keto-enamine) complexes. Inorg. Chem. 28, 2392–2399 (1989)
- Burton, S., Fronczek, F.R., Maverick, A.W.: A cofacial binuclear copper(II) complex with a bridging 1,4-dithiane ligand. Acta Crystallogr. E: Struct. Rep. Online E63, m1977–m1978 (2007)
- Pariya, C., Sparrow, C.R., Back, C.-K., Sandi, G., Fronczek, F.R., Maverick, A.W.: Copper β-diketonate molecular squares and their host-guest reactions. Angew. Chem. Int. Ed. 46, 6305–6308 (2007)
- Clegg, J.K.: Di- and tri-nuclear copper(II) metallocycles: building blocks for supramolecular chemistry. Aust. J. Chem. 59, 660 (2006)
- Clegg, J.K., Jolliffe, K.A., Lindoy, L.F., Meehan, G.V.: Metallosupramolecular assemblies incorporating 1,3- and 1,4-aryl linked bis-β-diketones—some recent studies. Pol. J. Chem. 82, 1131–1144 (2008)
- 20. Aromí, G., Gamez, P., Reedijk, J.: Poly β -diketones: Prime ligands to generate supramolecular metalloclusters. Coord. Chem. Rev. **252**, 964–989 (2008)
- Fenton, D.E., Regan, C.M., Casellato, U., Alessandro, P., Vigato, A., Vidali, M.: Binuclear complexes of tetraketones Inorg. Chim. Acta 58, 83–88 (1982)
- Saalfrank, R.W., Dresel, A., Seitz, V., Trummer, S., Hampel, F., Teichert, M., Stalke, D., Stadler, C., Daub, J., Schunemann, V., Trautwein, A.X.: Chelate complexes. 9. Topologic equivalents of coronands, cryptands and their inclusion complex. Synthesis, structure and properties of {2}-metallacryptands and {2}-metallacryptates. Chem. Eur. J. 3, 2058–2062 (1997)
- Saalfrank, R.W., Seitz, V., Caulder, D.L., Raymond, K.N., Teichert, M., Stalke, D.: Chelate complexes. Part 13. Self-assembly

of {2}-metallacryptands and {2}-metallacryptates. Eur. J. Inorg. Chem. 1313–1317 (1998)

- Maverick, A.W., Billodeaux, D.R., Ivie, M.L., Fronczek, F.R., Maverick, E.F.: Endo and exo coordination to cofacial binuclear copper(II) complexes. J. Incl. Phenom. Macrocycl. Chem. 39, 19–26 (2001)
- Albrecht, M., Janser, I., Meyer, S., Weis, P., Froehlich, R.: A metallosupramolecular tetrahedron with a huge internal cavity. Chem. Commun. 2854–2855 (2003)
- Albrecht, M., Schmid, S., deGroot, M., Weis, P., Froehlich, R.: Self-assembly of an unpolar enantiomerically pure helicate-type metalla-cryptand. Chem. Commun. 2526–2527 (2003)
- Aromi, G., Boldron, C., Gamez, P., Roubeau, O., Kooijman, H., Spek, A.L., Stoeckli-Evans, H., Ribas, J., Reedijk, J.: Complexes of a novel multinucleating poly-β-diketonate ligand. Dalton Trans. 3586–3592 (2004)
- Aromi, G., Ribas, J., Gamez, P., Roubeau, O., Kooijman, H., Spek, A.L., Teat, S., MacLean, E., Stoeckli-Evans, H., Reedijk, J.: Aggregation of [Cu^{II4}] building blocks into [Cu^{II8}] clusters or a [Cu^{II4}]∞ chain through subtle chemical control. Chem. Eur. J. 10, 6476–6488 (2004)
- Zheng, B.-S., Zhang, X.-Y., Zhu, H.-W., Luo, S.-X., Lindoy, L.F., McMurtrie, J.C., Turner, P., Wei, G.: Interaction of cobalt(II) and nickel(II) with a γ-linked, bis-β-diketone ligand to yield an unusual coordination motif. Dalton Trans. 1349–1351 (2005)
- Saalfrank, R.W., Schmidt, C., Maid, H., Hampel, F., Bauer, W., Scheurer, A.: Enantiomerically pure copper(II) cubanes [Cu4L2(OMe)4] from chiral bis-1,3-diketones H2L through diastereoselective self-assembly. Angew. Chem. Int. Ed. 45, 315–318 (2006)
- Zhang, X., Chen, H., Ma, C., Chen, C., Liu, Q.: Syntheses and structural characterizations of 24-membered dimetal (Mn, Ni, Fe) macrocyclic complexes and the C-S bond formation between acetylacetone and a mercapto N-heterocycle. Dalton. Trans. 4047–4055 (2006)
- Albrecht, M., Dehn, S., Schmid, S., DeGroot, M.: Enantiomerically pure bis-β-diketones: valuable building blocks for metallosupramolecular chemistry. Synthesis 155–158 (2007)
- 33. Shiga, T., Ito, N., Hidaka, A., Ōkawa, H., Kitagawa, S., Ohba, M.: Series of Trinuclear NiIILnIIINiII complexes derived from 2,6-di(acetoacetyl)pyridine: synthesis, structure, and magnetism. Inorg. Chem. 46, 3492–3501 (2007). doi:10.1021/ic0619153
- 34. Saalfrank, R.W., Scheurer, A., Puchta, R., Hampel, F., Maid, H., Heinemann, F.W.: Threading cesium ions: metal, host, and ligand control in supramolecular coordination chemistry. Angew. Chem. Int. Ed. 46, 265–268 (2007)
- Aguila, D., Barrios, L.A., Roubeau, O., Teat, S.J., Aromi, G.: Molecular assembly of two [Co(II)₄] linear arrays. Chem. Commun. (2011)
- 36. Aromi, G., Gamez, P., Krzystek, J., Kooijman, H., Spek, A.L., MacLean, E.J., Teat, S.J., Nowell, H.: Novel linear transition metal clusters of a heptadentate bis-β-diketone ligand. Inorg. Chem. 46, 2519–2529 (2007)
- 37. Saalfrank, R.W., Maid, H., Scheurer, A., Puchta, R., Bauer, W.: Mesomerization of S_4 -symmetric tetrahedral chelate complex $[In_4(L^3)_4]$: first-time monitored by temperature-dependent ¹H NMR spectroscopy. Eur. J. Inorg. Chem. **2010**, 2903–2906 (2010)
- Liu, T., Liu, Y., Xuan, W., Cui, Y.: Chiral nanoscale metal–organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010). doi:10.1002/anie.201000416
- 39. Luo, Y.-M., Chen, Z., Tang, R.-R., Xiao, L.-X., Peng, H.-J.: Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bisβ-diketone-type ligand. Spectrochem. Acta A 69, 513–516 (2008)

- Bassett, A.P., Magennis, S.W., Glover, P.B., Lewis, D.J., Spencer, N., Parsons, S., Williams, R.M., De Cola, L., Pikramenou, Z.: Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands. J. Am. Chem. Soc. **126**, 9413–9424 (2004)
- Aromi, G., Gamez, P., Roubeau, O., Berzal, P.C., Kooijman, H., Spek, A.L., Driessen, W.L., Reedijk, J.: A solvent-controlled switch of manganese complex assemblies with a β-diketonatebased ligand. Inorg. Chem. 41, 3673–3683 (2002)
- Aromi, G., Gamez, P., Berzal, P.C., Driessen, W.L., Reedijk, J.: Two new bis-β-diketones as ligands for novel systems in supramolecular chemistry. Synth. Commun. 33, 11–18 (2003)
- 43. Aromi, G., Stoeckli-Evans, H., Teat, S.J., Cano, J., Ribas, J.: Diand trinuclear Co^{II} complexes of a bis- β -diketone ligand with variable conformation: structure and magnetic studies. J. Mater. Chem. **16**, 2635–2644 (2006)
- Podyachev, S.N., Litvinov, I.A., Mustafina, A.R., Shagidullin, R.R., Habicher, W.D., Konovalov, A.I.: Synthesis of 1,3bis(acetylacetonyloxy)- and 1,3-bis(benzoylacetonyloxy)benzene and their complexation with lanthanide ions. Russ. Chem. Bull. 54, 623–632 (2005)
- Aromi, G., Gamez, P., Boldron, C., Kooijman, H., Spek, A.L., Reedijk, J.: A zig-zag [Mn^{II4}] cluster from a novel bis(β-diketonate) ligand. Eur. J. Inorg. Chem. 1940–1944 (2006)
- 46. Bray, D.J., Jolliffe, K.A., Lindoy, L.F., McMurtrie, J.C.: Tris- β -diketones and related keto derivatives for use as building blocks in supramolecular chemistry. Tetrahedron **63**, 1953–1958 (2007)
- Bray, D.J., Antonioli, B., Clegg, J.K., Gloe, K., Gloe, K., Jolliffe, K.A., Lindoy, L.F., Wei, G., Wenzel, M.: Assembly of a trinuclear metallo-capsule from a tripodal tris(β-diketone) derivative and copper(II). Dalton Trans. 1683–1685 (2008)
- Saalfrank, R.W., Seitz, V., Heinemann, F.W., Gobel, C., Herbst-Irmer, R.: Chelate complexes. Part 16. Metal and ligand control in di- and octa-nuclear cluster formation. J. Chem. Soc. Dalton Trans. 599–603 (2001)
- Saalfrank, R.W., Low, N., Demleitner, B., Stalke, D., Teichert, M.: Chelate complexes. Part 12. Metal-directed formation of tetra-, hexa-, octa-, and nonanuclear complexes of magnesium, calcium, manganese, copper, and cadmium. Chem. Eur. J. 4, 1305–1311 (1998)
- Li, F., Clegg, J.K., Jensen, P., Fisher, K., Lindoy, L.F., Meehan, G.V., Moubaraki, B., Murray, K.S.: Predesigned hexanuclear CuII and CuII/NiII metallacycles featuring six-node metallacoronand structural motifs. Angew. Chem. Int. Ed. 48, 7059–7063 (2009)
- Clegg, J.K., Lindoy, L.F., Moubaraki, B., Murray, K.S., McMurtrie, J.C.: Triangles and tetrahedra: metal directed selfassembly of metallo-supramolecular structures incorporating bisβ-diketonato ligands. Dalton Trans. 2417–2423 (2004)
- 52. Clegg, J.K., Lindoy, L.F., McMurtrie, J.C., Schilter, D.: Dinuclear bis-β-diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallo-supramolecular structures. Dalton Trans. 857–864 (2005)
- Clegg, J.K., Lindoy, L.F., McMurtrie, J.C., Schilter, D.: Extended three-dimensional supramolecular architectures derived from trinuclear (bis-β-diketonato)copper(II) metallocycles. Dalton Trans. 3114–3121 (2006)
- 54. Clegg, J.K., Gloe, K., Hayter, M.J., Kataeva, O., Lindoy, L.F., Moubaraki, B., McMurtrie, J.C., Murray, K.S., Schilter, D.: New discrete and polymeric supramolecular architectures derived from dinuclear (bis-β-diketonato)copper(II) metallocycles. Dalton Trans. 3977–3984 (2006)
- 55. Clegg, J.K., Bray, D.J., Gloe, K., Gloe, K., Hayter, M.J., Jolliffe, K.A., Lawrance, G.A., Meehan, G.V., McMurtrie, J.C., Lindoy, L.F., Wenzel, M.: Neutral (bis-β-diketonato) iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) metallocycles: structural,

electrochemical and solvent extraction studies. Dalton Trans. 1719–1730 (2007)

- 56. Clegg, J.K., Bray, D.J., Gloe, K., Gloe, K., Jolliffe, K.A., Lawrance, G.A., Lindoy, L.F., Meehan, G.V., Wenzel, M.: Synthetic, structural, electrochemical and solvent extraction studies of neutral trinuclear Co(II), Ni(II), Cu(II) and Zn(II) metallocycles and tetrahedral tetranuclear Fe(III) species incorporating 1,4-aryllinked bis-β-diketonato ligands. Dalton Trans. 1331–1340 (2008)
- 57. Clegg, J.K., Hayter, M.J., Jolliffe, K.A., Lindoy, L.F., McMurtrie, J.C., Meehan, G.V., Neville, S.M., Parsons, S., Tasker, P.A., Turner, P., White, F.J.: New discrete and polymeric supramolecular architectures derived from dinuclear Co(II), Ni(II) and Cu(II) complexes of aryl-linked bis-β-diketonato ligands and nitrogen bases: synthetic, structural and high pressure studies. Dalton. Trans. **39**, 2804–2815 (2010)
- Clegg, J.K., Iremonger, S.S., Hayter, M.J., Southon, P.D., Mac-Quart, R.B., Duriska, M.B., Jensen, P., Turner, P., Jolliffe, K.A., Kepert, C.J., Meehan, G.V., Lindoy, L.F.: Hierarchical selfassembly of a chiral metal-organic framework displaying pronounced porosity. Angew. Chem. Int. Ed. 49, 1075–1078 (2010)
- Li, F., Clegg, J.K., Lindoy, L.F., MacQuart, R.B., Meehan, G.V.: Metallosupramolecular self-assembly of a universal 3-ravel. Nat Commun. 2, 205 (2011). doi:10.1038/ncomms1208
- Clegg, J.K., Li, F., Jolliffe, K.A., Meehan, G.V., Lindoy, L.F.: An expanded neutral M₄L₆ cage that encapsulates four tetrahydrofuran molecules. Chem. Commun, Accepted (2011)
- Soldatov, D.V., Enright, G.D., Sokolov, I.E.: Coordination polymer with a staircase molecular architecture: Connecting binuclear Zn(II) bis-chelate platforms with bridging 4,4'-bipyridyl. J. Struct. Chem. 48, 325–331 (2007)
- Soldatov, D.V., Sokolov, I.E., Suwin'ska, K.: Molecular ladders based upon binuclear bis-chelate platforms. J. Struct. Chem. 46, S158–S164 (2005)
- 63. Soldatov, D.V., Zanina, A.S., Enright, G.D., Ratcliffe, C.I., Ripmeester, J.A.: A new bridging chelating ligand for crystal engineering: synthesis, polymorphism, and two modes of assembly of 1,4-bis(3-phenyl-1, 3-propanedionyl)benzene with metal cations resulting in either discrete or polymeric complexes. Cryst. Growth Des. 3, 1005–1013 (2003)
- 64. Grillo, V.A., Seddon, E.J., Grant, C.M., Aromi, G., Bollinger, J.C., Folting, K., Christou, G.: Bis(β-diketonate) ligands for the synthesis of bimetallic complexes of TiIII, VIII, MnIII and FeIII with a triple-helix structure. Chem. Commun. 1561–1562 (1997)
- 65. Matsushita, M.M., Yasuda, T., Kawano, R., Kawai, T., Iyoda, T.: Intramolecular magnetic interaction of phenylene-linked bis- β -diketone metal complexes. Chem. Lett. 812–813 (2000)
- 66. Hayter, M.J., Bray, D.J., Clegg, J.K., Lindoy, L.F.: New bispyrazole derivatives synthesized from aryl- and xylyl-linked bis(β-diketone) precursors. Synth. Commun. 36, 707–714 (2006)
- Martin, D.F., Shamma, M., Fernelius, W.C.: Bis-(β-Diketones).
 I. Synthesis of compounds of the type RCOCH₂CO-Y-COCH₂-COR. J. Am. Chem. Soc. 80, 4891–4895 (1958). doi:10.1021/ja01551a032
- Gloe, K., Mühl, P.: Determination of metal extraction process parameters using tracer technique. Isot. Environ. Health Stud. 19, 257–260 (1983)
- Stephan, H., Juran, S., Antonioli, B., Gloe, K., Gloe, K.: Extraction methods. In: Schalley, C.A. (ed.) Analytical Methods in Supramolecular Chemistry, pp. 79–103. Wiley-VCH, Weinham (2007)
- Marcus, Y., Kertes, A.S.: Ion Exchange and Solvent Extraction of Metal Complexes. Wiley, London (1969)
- Hooft, R.W.W.: Collect. Nonius B. V., Delft, The Netherlands (1998)

- 72. Duisenberg, A.J.M.: DirAx is a program for indexing of single crystal data J. Appl. Cryst. 25, 92 (1992)
- Duisenberg, A.J.M., Kroon-Batenburg, L.M.J., Schreurs, A.M.M.: An intensity evaluation method: EVAL-14. J. Appl. Cryst. 36, 220 (2003)
- Farrugia, L.J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 32, 837–838 (1999). doi: 10.1107/S0021889899006020
- Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giocavazzo, C., Gaugliardi, A., Moliterni, G.C., Polidori, G., Spagna, S.: SIR97, a package for crystal structure solution by direct methods and refinement. J. Appl. Cryst. 32, 115–119 (1999)
- Sheldrick, G.M.: SADABS. Empirical Absorption and Correction Software. University of Göttingen, Germany (1996–2008)
- 77. Sheldrick, G.M.: A short history of *SHELX*. Acta Cryst. A **64**, 112–122 (2008)
- Martin, D.F., Shamma, M., Fernelius, W.C.: Bis-(β-diketones). II. The synthesis and spectra of compounds of the type [(RCO)R'COCH]₂CHR''. J. Am. Chem. Soc. 80, 5851–5856 (1958)
- Gosciniak, D.J., Patrick, N.J.: Ultraviolet radiation absorbing compositions of bis-1,3-diketone derivatives of benzene. Patent EP 0376511A2 (1990)
- Martin, D.F., Fernelius, W.C., Shamma, M.: Bis(β-diketones). III. Synthesis and properties of compounds of the type (RCO) (R'CO)CHYCH(COR)(COR'). J. Am. Chem. Soc. 81, 130–133 (1959)
- Rasmussen, R.S., Tunnicliff, D.D., Brattain, R.R.: Infrared and ultraviolet spectroscopic studies on ketones. J. Am. Chem. Soc. 71, 1068–1072 (1949). doi:10.1021/ja01171a087
- Funck, L.L., Ortolano, T.R.: Effects of axial ligation on the ligand field spectra of copper(II) β-diketonates. Inorg. Chem. 7, 567–573 (1968). doi:10.1021/ic50061a037
- Burdett, J.L., Rogers, M.T.: Keto-enol tautomerism in β-dicarbonyls studied by nuclear magnetic resonance spectroscopy.1 I. Proton chemical shifts and equilibrium constants of pure compounds. J. Am. Chem. Soc. 86, 2105–2109 (1964). doi:10.1021/ja01065a003
- 84. Farrugia, L.: ORTEP-3 for Windows—a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Cryst. 30, 565 (1997). doi:10.1107/S0021889897003117
- Tasker, P.A., Plieger, P.G., West, L.C.: In: McCleverty, J.A., Meyer, T.J. (eds.) Comprehensive Coordination Chemistry II, vol. 9, pp. 709–808. Elsevier, Oxford (2004)
- Rydberg, J., Cox, M., Musikas, C., Choppin, G.R. (eds.): Solvent Extraction Principles and Practice. Marcel Dekker, New York (2004)
- Wenzel, M., Bray, D.J., Clegg, J.K., Gloe, K., Gloe, K., Lindoy, L.F., Meehan, G.V.: Liquid-liquid extraction studies with bisβ-diketones. In: Moyer, B.A. (ed.) Solvent Extraction: Fundamentals to Industrial Applications, pp. 1493–1498. The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal (2008)
- Price, J.R., Fainerman-Melnikova, M., Fenton, R.R., Gloe, K., Lindoy, L.F., Rambusch, T., Skelton, B.W., Turner, P., White, A.H., Wichmann, K.: Macrocyclic ligand design. Structurefunction relationships involving the interaction of pyridinylcontaining, oxygen-nitrogen donor macrocycles with selected transition and post transition metal ions on progressive N-benzylation of their secondary amines. Dalton. Trans. 3715–3726 (2004)
- Rydberg, J., Choppin, G.R., Musikas, C., Sekine, T.: Solvent extraction equilibria. In: Rydberg, J., Cox, M., Musikas, C., Choppin, G.R. (eds.) Solvent Extraction Principles and Practice, pp. 109–201. Marcel Dekker, New York (2004)